Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum
نویسندگان
چکیده
In the production and breeding of Chrysanthemum sp., shoot branching is an important quality aspect as the outgrowth of axillary buds determines the final plant shape. Bud outgrowth is mainly controlled by apical dominance and the crosstalk between the plant hormones auxin, cytokinin and strigolactone. In this work the hormonal and genetic regulation of axillary bud outgrowth was studied in two differently branching cut flower Chrysanthemum morifolium (Ramat) genotypes. C17 is a split-type which forms an inflorescence meristem after a certain vegetative period, while C18 remains vegetative under long day conditions. Plant growth of both genotypes was monitored during 5 subsequent weeks starting one week before flower initiation occurred in C17. Axillary bud outgrowth was measured weekly and samples of shoot apex, stem and axillary buds were taken during the first two weeks. We combined auxin and cytokinin measurements by UPLC-MS/MS with RT-qPCR expression analysis of genes involved in shoot branching regulation pathways in chrysanthemum. These included bud development genes (CmBRC1, CmDRM1, CmSTM, CmLsL), auxin pathway genes (CmPIN1, CmTIR3, CmTIR1, CmAXR1, CmAXR6, CmAXR2, CmIAA16, CmIAA12), cytokinin pathway genes (CmIPT3, CmHK3, CmRR1) and strigolactone genes (CmMAX1 and CmMAX2). Genotype C17 showed a release from apical dominance after floral transition coinciding with decreased auxin and increased cytokinin levels in the subapical axillary buds. As opposed to C17, C18 maintained strong apical dominance with vegetative growth throughout the experiment. Here high auxin levels and decreasing cytokinin levels in axillary buds and stem were measured. A differential expression of several branching genes accompanied the different hormonal change and bud outgrowth in C17 and C18. This was clear for the strigolactone biosynthesis gene CmMAX1, the transcription factor CmBRC1 and the dormancy associated gene CmDRM1, that all showed a decreased expression in C17 at floral transition and an increased expression in C18 with continuous vegetative growth. These results offer a case study for Chrysanthemum, showing an altered cytokinin to auxin balance and differential gene expression between vegetative growth with apical dominance and transition to generative growth with loss of apical dominance and axillary bud outgrowth. This suggests a conservation of several aspects of the hormonal and genetical regulation of bud outgrowth in Chrysanthemum. Furthermore, 15 previously uncharacterised genes in chrysanthemum, were described in this study. Of those genes involved in axillary bud outgrowth we identified CmDRM1, CmBRC1 and CmMAX1 as having an altered expression preceding axillary bud outgrowth, which could be useful as markers for bud activity.
منابع مشابه
Impacts of strigolactone on shoot branching under phosphate starvation in chrysanthemum (Dendranthema grandiflorum cv. Jinba)
Chrysanthemum (Dendranthema grandiflorum cv. Jinba) shoot branching is determined by bud outgrowth during the vegetative growth stage. The degree of axillary bud outgrowth is highly influenced by environmental conditions, such as nutrient availability. Here, we demonstrated that phosphorus (Pi) starvation significantly reduces axillary bud outgrowth in chrysanthemum. A strigolactone (SL) biosyn...
متن کاملRoles for auxin, cytokinin, and strigolactone in regulating shoot branching.
Many processes have been described in the control of shoot branching. Apical dominance is defined as the control exerted by the shoot tip on the outgrowth of axillary buds, whereas correlative inhibition includes the suppression of growth by other growing buds or shoots. The level, signaling, and/or flow of the plant hormone auxin in stems and buds is thought to be involved in these processes. ...
متن کاملRoles of DgBRC1 in Regulation of Lateral Branching in Chrysanthemum (Dendranthema ×grandiflora cv. Jinba)
The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously prov...
متن کاملEffect of Strigolactone on Polar Auxin Transport and Plant Architecture
Physiologically, branching is regulated by a complex interplay of hormones including auxin, cytokinin and recently discovered strigolactone. The study is focused on the effect of strigolactone on shoot branching of pea (Pisum sativum L.) in relation with polar auxin transport, which has an essential role in apical dominance. After decapitation of the dominant apex lateral buds are released from...
متن کاملGibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas
Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and t...
متن کامل